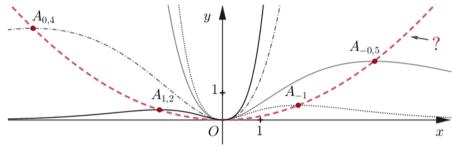
▶ R08 a est un paramètre réel non nul, pour tout réel x on pose : $f_a(x) = x^2 e^{ax}$, (\mathcal{C}_a) est la courbe représentative de f dans un repère orthogonal, f_a admet un minimum local et un maximum local, l'un atteint en zéro, l'autre atteint en x_a et valant y_a . On note A_a le point de (\mathcal{C}_a) d'abscisse x_a : étudier la disposition des points A_a , $a \in \mathbb{R}$.

On a représenté ci-dessous les courbes (C_a) pour trois valeurs particulières de a ainsi que les points A_a pour ces valeurs de a:



Corrigé

Pour tout $x \in \mathbb{R}$, $f_a(x) = x^2 e^{ax}$.

Rappels : (uv)' = u'v + v'u et $(e^u)' = u'e^u$

 $f_{\alpha}'(x) = 2xe^{ax} + x^2ae^{ax}$

$$f_a'(x) = xe^x(2 + xa)$$

Pour tout $x \in \mathbb{R}$, $e^x > 0$ donc f'(x) est du signe de x(ax + 2).

Or, x(ax + 2) s'annule en changeant de signes pour x = 0 et pour

$$x = -\frac{2}{a}\operatorname{donc}: x_a = -\frac{2}{a}.$$

On a:
$$y_a = f_a(x_a) = x_a^2 e^{a \times x_a} = \left(-\frac{2}{a}\right)^2 \times e^{a \times \frac{-2}{a}} = \frac{4}{a^2} e^{-2}.$$

De $x_a = -\frac{2}{a}$ on obtient : $ax_a = -2$ puis : $a = -\frac{2}{x_a}$, puis en remplaçant

dans l'expression de y_a :

$$y_a = \frac{\frac{1}{4}}{\left(\frac{2}{x_a}\right)^2} e^{-2} = \frac{\frac{4}{4}}{\frac{4}{(x_a)^2}} \times e^{-2} = 4 \times \frac{x_a^2}{4} \times e^{-2} = \frac{1}{e^2} x_a^2$$

$$y_a = \frac{1}{e^2} x_a^2$$

donc les points A_a appartiennent à la parabole d'équation $y = \frac{1}{e^2} x^2$.